

Multi-view Geometry and 3D

- We have 2 eyes, thus we see 3D
- Using multiple views allows inference of the 3rd dimension

How to see in 3D

(Using geometry...)

- Find corresponding features
- Triangulate and reconstruct depth

Correspondence

Given a point in one image, find the point in a second image of the same 3-D location.

One of the hardest vision problems!

- *Last Lecture:* Algorithms for (quickly) estimating best correspondences.
- *Now:* Where do we search? What are the constraints between images of 3-D points in multiple views?

Outline

- · Multi-view geometry
- · Epipolar constraint
- Essential matrix
- Fundamental matrix
- · Trifocal tensor

Multi-view Geometry

Relate

Multi-view Geometry

Relate • • 3-D points • •

Multi-view Geometry

Relate

3-D points

. •

Camera centers

Multi-view Geometry

Relate

- 3-D points
- Camera centers
- · Camera orientation

Multi-view Geometry

Multi-view Geometry

Relate

- · 3-D points
- Camera centers
- · Camera orientation
- · Camera intrinsics

Stereo Constraints

Given p in left image, where can corresponding point p' be?

Could be anywhere! Might not be same scene! ... Assume pair of pinhole views of static scene:

Stereo Constraints

Epipolar Line

Given p in left image, where can p' be?

Epipolar Constraint

All epipolar lines contain epipole, the image of other camera center.

Epipolar Constraint

All epipolar lines contain epipole, the image of other camera center.

From Geometry to Algebra

The epipolar constraint: these vectors are coplanar:

$$\overrightarrow{Op} \cdot [\overrightarrow{OO'} \times \overrightarrow{O'p'}] = 0$$

 $\overrightarrow{Op} \cdot \left[\overrightarrow{OO'} \times \overrightarrow{O'p'} \right] = 0$ $p \cdot \left[t \times (t + \mathcal{R}, p') \right] = 0$ $p \cdot \left[t \times (\mathcal{R}, p') \right] = 0$

0 P P O'

$$\overrightarrow{Op} \cdot \left[\overrightarrow{OO'} \times \overrightarrow{O'p'} \right] = 0$$

$$e_1 \xrightarrow{p} p'$$

 p'
 $t \xrightarrow{p} e_2$

p,p' are image coordinates of P in c1 and c2...

c2 is related to c1 by rotation R and translation t

$$\boldsymbol{p} \cdot \left[\boldsymbol{t} \times \left(\boldsymbol{t} + \boldsymbol{\mathcal{R}} \boldsymbol{p'} \right) \right] = \boldsymbol{0}$$

$$\boldsymbol{p} \cdot \left[\boldsymbol{t} \times (\boldsymbol{\mathcal{R}}, \boldsymbol{p'}) \right] = 0$$

$$p \cdot [t imes (\mathcal{R}p')]$$
 = 0

Linear constraint, should be able to express as matrix equation...

Review: Matrix Form of the Cross Product

The vector cross product also acts on two vectors and returns a third vector. Geometrically, this new vector is constructed such that its projection onto either of the two input vectors is zero.

$$\vec{a} \times \vec{b} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix}$$
$$\vec{a} \times \vec{b} = \begin{bmatrix} \mathbf{0} & -\mathbf{a}_z & \mathbf{a}_y \\ \mathbf{a}_z & \mathbf{0} & -\mathbf{a}_x \\ -\mathbf{a}_y & \mathbf{a}_x & \mathbf{0} \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = \vec{c} \quad \vec{b} \cdot \vec{c} = \mathbf{0}$$

Review: Matrix Form of the Cross Product

$$\vec{a} \times \vec{b} = \begin{bmatrix} 0 & -a_x & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = \vec{c} \quad \vec{a} \cdot \vec{c} = 0$$
$$\begin{bmatrix} a_x & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix}$$

Review: Matrix Form of the Cross Product

$$\vec{a} \times \vec{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = \vec{c} \quad \vec{b} \cdot \vec{c} = 0$$
$$[a_x] = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \qquad \vec{a} \times \vec{b} = [a_x] \vec{b}$$

Matrix Form

$$p \cdot [t \times (\mathcal{R}p')] = 0$$

Matrix Form

$$p \cdot [t \times (\mathcal{R}p')] = 0$$

$$\vec{a} \times \vec{b} = [a_x]\vec{b}$$

$$p^T[t_x]\Re p' = 0$$

$$\varepsilon = [t_x]\Re$$

$$p^T \mathcal{E}p' = 0$$

Essential Matrix

Matrix that relates image of point in one camera to a second camera, given translation and rotation.

5 independent parameters (up to scale)

Assumes intrinsic parameters are known.

Epipolar Line Constraint

 $\mathcal{E}p'$ is the epipolar line corresponding to p' in the left camera. au + bv + c = 0

$$p = (u, v, 1)^{T}$$
$$l = (a, b, c)^{T}$$
$$l \cdot p = 0$$
$$p^{T} \mathcal{E} p' = 0$$

 $\mathcal{E}p' \cdot p = 0$

Essential Matrix – Instantaneous case

• For small motion given translation and rotation velocity:

$$\begin{aligned} \boldsymbol{t} &= \delta t \, \boldsymbol{v}, \\ \mathcal{R} &= \mathbf{I} \, \mathbf{\dot{+}} + \delta t \, [\boldsymbol{\omega}_{\times}] \\ \boldsymbol{p}' &= \boldsymbol{p} + \delta t \, \dot{\boldsymbol{p}}. \end{aligned}$$

$$p^{T} \mathcal{E} p' = 0 \qquad p^{T} [t_{x}] \Re p' = 0$$
$$p^{T} \underbrace{[v_{\times}](I + \delta t [\omega_{\times}])}_{\mathcal{E}} (p + \delta t \dot{p}) = 0$$

Focus of Expansion for Translating Camera

 FiGURE 11.3: Focus of expansion: under pure translation, the motion field at every point in the image points toward the focus of expansion.

FOE for Translating Camera

What if calibration is unknown?

Recall calibration eqn:

Fundamental Matrix

Essential matrix for points on normalized image plane,

$$\hat{p}^T \mathcal{E} \hat{p}' = 0$$

 $p = K\hat{p}$

assume unknown calibration matrix:

vields:

$$p^T \mathcal{F} p' = 0$$
 $\mathcal{F} = \mathcal{K}^{-T} \mathcal{E} \mathcal{K}'^{-1}$

Estimating the Fundamental Matrix

$$p^T \mathcal{F} p' = 0$$

Each point correspondence can be expressed as a single linear equation

 $(u,v,1) \begin{pmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{pmatrix} \begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} = 0$

Estimating the Fundamental Matrix

$$\boldsymbol{p}^T \mathcal{F} \boldsymbol{p}' = 0$$

Each point correspondence can be expressed as a single linear equation

$$(u,v,1) \begin{pmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{pmatrix} \begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} = 0 \Leftrightarrow (uu',uv',u,vu',vv',v,u',v',1) \begin{pmatrix} F_{11} \\ F_{12} \\ F_{23} \\ F_{23} \\ F_{33} \\ F_{33} \\ F_{33} \end{pmatrix} = 0$$

8 Point Algorithm

8 corresponding points, 8 equations.

$(u_1u'_1)$	$u_1v'_1$	u_1	$v_1u'_1$	v_1v_1'	v_1	u'_1	v'_1	(F_{11})		(1)
$u_2u'_2$	$u_2v'_2$	u_2	$v_2u'_2$	$v_2 v'_2$	v_2	u'_2	v'_2	F_{12}	= -	1
$u_3u'_3$	$u_3v'_3$	u_3	$v_3u'_3$	v_3v_3'	v_3	u'_3	v'_3	F_{13}		1
$u_4u'_4$	u_4v_4'	u_4	$v_4u'_4$	v_4v_4'	v_4	u'_4	v'_4	F_{21}		1
$u_5u'_5$	$u_5v'_5$	u_5	$v_5u'_5$	v_5v_5'	v_5	u'_5	v'_5	F_{22}		1
$u_6u'_6$	$u_6v'_6$	u_6	$v_6 u'_6$	v_6v_6'	v_6	u'_6	v'_6	F_{23}		1
$u_7u'_7$	u_7v_7'	u_7	$v_7 u'_7$	v_7v_7'	v_7	u'_7	v'_7	F_{31}		1
$u_8u'_8$	$u_8v'_8$	u_8	$v_8u'_8$	$v_8v'_8$	v_8	u'_8	v_8^i	$\langle F_{32} \rangle$		(1)

Invert and solve for \mathcal{F} .

(Use more points if available; find least-squares solution to minimize $\sum_{i=1}^{n} (p_i^T \mathcal{F} p_i^r)^2$)

8 Point Algorithm

is F (or E) full rank?

No...singular with rank=2. Has zero eigenvalue corresponding to epipole.

$$F'e=0$$

 $\boldsymbol{p}^T \mathcal{F} \boldsymbol{p}' = 0$

(Note that \mathcal{E} has two equal singlar values [Huang and Faugeras 1989])

Improved 8 Point Algorithm

Enforce rank 2 constraint!

(Also pay attention to numerical conditioning...)

Hartley 1995: use SVD.

- 1. Transform to centered and scaled coordinates
- 2. Form least-squares estimate of F
- 3. Set smallest singular value to zero.

Zhengyou Zhang Determining the Epipolar Geometry and its Uncertainty: A Review www.cs.unr.edu/~mircea/Courses/ cs790E/Lectures/zhang2.ppt

Normalizing the Input Data

- Directly use the pixel coordinates produces bad result
- · Normalization method is quite necessary
- · Isotropic scaling of the input data:

to $\sqrt{2}$.

- Points are translated to have their centroid at the origin
 The coordinates are scaled isotropically so that the average distance from the origin to these points is equal
 - Zhengyou Zhang 26 Determining the Epipolar Geometry and its Uncertainty: A Review

Stereo Constraints

Given p_1 , p_2 , in the left and right image where is p_3 ?

Three Essential Matrices

Essential matrices relate each pair: (calibrated case)

Trinocular Epipolar Geometry

Trinocular Epipolar Geometry

 p_1 is at the intersection of the epipolar lines associated with $p_2 \, and \, p_3$

Recall: Epipolar Line Constraint

Three Essential Matrices

$$\left\{ egin{array}{l} oldsymbol{p}_1^T \mathcal{E}_{12} oldsymbol{p}_2 = 0 \ oldsymbol{p}_2^T \mathcal{E}_{23} oldsymbol{p}_3 = 0 \ oldsymbol{p}_3^T \mathcal{E}_{31} oldsymbol{p}_1 = 0 \end{array}
ight.$$

$$\boldsymbol{p}_1^T \boldsymbol{\mathcal{E}}_{12} \boldsymbol{p}_2 = 0$$
$$\boldsymbol{p}_3^T \boldsymbol{\mathcal{E}}_{31} \boldsymbol{p}_1 = 0$$

Combining extrinsic and intrinsic calibration parameters

Forsyth&Ponce

Extrinsic parameters: translation and rotation of camera frame

Trifocal Line Constraint

Form the plane containing a line *l* and optical center of one camera:

Trifocal Line Constraint

If 3 lines intersect in more than one point (a line) this system is degenerate and is rank 2.

Trifocal Line Constraint

Assume calibrated camera coordinates

$$\mathcal{M}_1 = (\mathrm{Id} \ \mathbf{0})$$

 $\mathcal{M}_2 = (\mathcal{R}_2 \ \mathbf{t}_2)$

 $\mathcal{M}_3 = (\mathcal{R}_3 \quad t_3)$

then

$$\mathcal{L} = egin{pmatrix} oldsymbol{l}_1^T & 0 \ oldsymbol{l}_2^T \mathcal{R}_2 & oldsymbol{l}_2^T oldsymbol{t}_2 \ oldsymbol{l}_3^T \mathcal{R}_3 & oldsymbol{l}_3^T oldsymbol{t}_3 \end{pmatrix}$$

$$\mathcal{L} = egin{pmatrix} oldsymbol{I}_1^T & 0 \ oldsymbol{l}_2^T \mathcal{R}_2 & oldsymbol{l}_2^T oldsymbol{t}_2 \ oldsymbol{l}_3^T \mathcal{R}_3 & oldsymbol{l}_2^T oldsymbol{t}_3 \ \end{pmatrix}$$

Rank $\mathcal{L} = 2$ means det. of 3x3 minors are zero, and can be expressed as:

$$l_1 imes egin{pmatrix} l_2^T \mathcal{G}_1^1 l_3 \ l_2^T \mathcal{G}_1^2 l_3 \ l_2^T \mathcal{G}_1^3 l_3 \ l_2^T \mathcal{G}_1^3 l_3 \end{pmatrix} = \mathbf{0},$$

with

$$\mathcal{G}_1^i = oldsymbol{t}_2 oldsymbol{R}_3^{iT} - oldsymbol{R}_2^i oldsymbol{t}_3^T$$

The Trifocal Tensor

These 3 3x3 matrices are called the trifocal tensor.

$$\mathcal{G}_1^i = oldsymbol{t}_2 oldsymbol{R}_3^{iT} - oldsymbol{R}_2^i oldsymbol{t}_3^T$$

the constraint

$$oldsymbol{l}_1 imesegin{pmatrix} oldsymbol{l}_1^T\mathcal{G}_1^Toldsymbol{l}_1^Toldsymbol{l}_2^Toldsymbol{l}_1^Toldsymbol{l}_3^Toldsymbol{l$$

can be used for point or line transfer.

Trifocal Line Constraint

line transfer:

$$oldsymbol{l}_1 pprox egin{pmatrix} oldsymbol{l}_2^T \mathcal{G}_1^1 oldsymbol{l}_3 \ oldsymbol{l}_2^T \mathcal{G}_1^2 oldsymbol{l}_3 \ oldsymbol{l}_2^T \mathcal{G}_1^3 oldsymbol{l}_3 \ oldsymbol{l}_2^T \mathcal{G}_1^3 oldsymbol{l}_3 \ oldsymbol{l}_2^T oldsymbol{G}_1^3 oldsymbol{L}_3 \ oldsymbol{L}_3^T oldsymbol{L}_3^3 \ old$$

point transfer via lines: form independent pairs of lines through p2,p3, solve for p1.

Line Transfer

Uncalibrated Case

$$\mathcal{L} = \begin{pmatrix} \boldsymbol{l}_{1}^{T} \mathcal{K}_{1} & \boldsymbol{0} \\ \boldsymbol{l}_{2}^{T} \mathcal{K}_{2} \mathcal{R}_{2} & \boldsymbol{l}_{2}^{T} \mathcal{K}_{2} \boldsymbol{t}_{2} \\ \boldsymbol{l}_{3}^{T} \mathcal{K}_{3} \mathcal{R}_{3} & \boldsymbol{l}_{3}^{T} \mathcal{K}_{3} \boldsymbol{t}_{3} \end{pmatrix}$$
$$\mathcal{A}_{i} \stackrel{\text{def}}{=} \mathcal{K}_{i} \mathcal{R}_{i} \mathcal{K}_{1}^{-1} \qquad \boldsymbol{a}_{i} \stackrel{\text{def}}{=} \mathcal{K}_{i} \boldsymbol{t}_{i}$$
$$\mathcal{M}_{1} = (\mathcal{K}_{1} \quad \boldsymbol{0}), \ \mathcal{M}_{2} = (\mathcal{A}_{2} \mathcal{K}_{1} \quad \boldsymbol{a}_{2}),$$
$$\mathcal{M}_{3} = (\mathcal{A}_{3} \mathcal{K}_{1} \quad \boldsymbol{a}_{3})$$
$$\text{Rank}(\mathcal{L}) = 2 \Longleftrightarrow \text{Rank}(\mathcal{L} \begin{pmatrix} \mathcal{K}_{1}^{-1} & \boldsymbol{0} \\ \boldsymbol{0} & 1 \end{pmatrix}) = \text{Rank} \begin{pmatrix} \boldsymbol{l}_{1}^{T} \mathcal{L}_{2} & \boldsymbol{l}_{1}^{T} \boldsymbol{a}_{2} \\ \boldsymbol{l}_{1}^{T} \mathcal{A}_{3} & \boldsymbol{l}_{1}^{T} \boldsymbol{a}_{3} \end{pmatrix} = 2$$

Quadrifocal Geometry

Can form a "quadrifocal tensor"

Faugeras and Mourrain (1995) have shown that it is algebraically dependent on associated essential/fundamental matricies and trifocal tensor: no new constraints added.

No additional independent constraints from more than 3 views.

Figure 12.10. Given four images p_1, p_2, p_3 and p_4 of some point P and three arbitrary image lines l_2 , l_3 and l_4 passing through the points p_2 , p_3 and p_4 , the ray passing through O_1 and p_1 must also pass through the point where the three planes L_2 , L_3 and L_4 formed by the primages of these lines intersect.

Trifocal Constraint with Noise

Project

- Final project may be:
 - An original implementation of a new or published idea
- A project proposal not longer than two pages must be submitted by April 1.

Project

March 24: - Project Previews / Brainstorming

- 3-5 minute presentation describing
 - Specific Project Idea
 - Your research, or thesis proposal (if it relates to vision)
 - Paper you are interested in and may form the basis of a project