Multioview seonnetry
Readings: FP10
March 11, 2006

How to see in 3D

(Using geometry...)

- Find corresponding features
- Triangulate and reconstruct depth

Outline

Multi-view Geometry and 3D

- We have 2 eyes, thus we see 3D
- Using multiple views allows inference of the $3^{\text {rd }}$ dimension

Correspondence

Given a point in one image, find the point in a second image of the same 3-D location.

One of the hardest vision problems!

Last Lecture: Algorithms for (quickly) estimating best correspondences.
Now: Where do we search? What are the constraints between images of 3-D points in multiple views?

Multi-view Geometry

- Multi-view geometry
- Epipolar constraint

Relate

- Essential matrix
- Fundamental matrix
- Trifocal tensor

Multi-view Geometry

Relate

- 3-D points .

Multi-view Geometry

Multi-view Geometry

Relate

- 3-D points
- Camera centers
- Camera orientation

Multi-view Geometry

Relate

- 3-D points
- Camera centers
- Camera orientation
- Camera intrinsics

Stereo Constraints

Relate

- 3-D points
- Camera centers
- Camera orientation
- Camera intrinsics

Relate

- 3-D points
-
- Camera centers

Stereo Constraints

Given p in left image, where can p ' be?

Epipolar Constraint

FIGURE 111 : Epipolar goosetry: the point P, the optical cestes O and O^{\prime} of the two

From Geometry to Algebra

The epipolar constraint: these vectors are coplanar:

$$
\overrightarrow{O p} \cdot\left[\overrightarrow{O O^{\prime}} \times \overrightarrow{O^{\prime} p^{\prime}}\right]=0
$$

Epipolar Constraint

All epipolar lines contain epipole, the image of other camera center.

$$
\left.\overrightarrow{O p} \cdot \mid \overrightarrow{O O^{\prime}} \times \overrightarrow{O^{\prime} p^{\prime}}\right]=0
$$

p,p'are image
coordinates of
Pinc1 and c2...
c2 is related to cl by
rotation R and
translation t

The vector cross product also acts on two vectors and returns a third vector. Geometrically, this new vector is constructed such that its projection onto either of the two input vectors is zero.

$$
\vec{a} \times \vec{b}=\left[\begin{array}{l}
a_{y} b_{z}-a_{z} b_{y} \\
a_{z} b_{x}-a_{x} b_{z} \\
a_{x} b_{y}-a_{y} b_{x}
\end{array}\right]
$$

$$
\vec{a} \times \vec{b}=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\vec{c} \begin{aligned}
& \vec{a} \cdot \vec{c}=0 \\
& \vec{b} \cdot \vec{c}=0
\end{aligned}
$$

Review: Matrix Form of the Cross Product

$$
\vec{a} \times \vec{b}=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\vec{c} \begin{aligned}
& \bar{a} \cdot \bar{c}=0 \\
& \vec{b} \cdot \vec{c}=0
\end{aligned}
$$

$$
\left[a_{x}\right]=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]
$$

$$
\vec{a} \times \vec{b}=\left[a_{x}\right] \vec{b}
$$

$$
\vec{a} \times \vec{b}=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\vec{c} \begin{aligned}
& \bar{a} \cdot \bar{c}=0 \\
& \vec{b} \cdot \vec{c}=0
\end{aligned}
$$

$$
\left[a_{x}\right]=\left[\begin{array}{rrr}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]
$$

Matrix Form

$$
\boldsymbol{p} \cdot\left[\boldsymbol{t} \times\left(\mathcal{R} p^{\prime}\right)\right]=0
$$

$\boldsymbol{p} \cdot\left[\boldsymbol{t} \times\left(\mathcal{R} \boldsymbol{p}^{\prime}\right)\right]=0$

$$
\vec{a} \times \vec{b}=\left[a_{x}\right] \vec{b}
$$

$$
p^{T}\left[t_{x}\right] \Re p^{\prime}=0
$$

$$
\varepsilon=\left[t_{x}\right] \Re
$$

$$
\boldsymbol{p}^{T} \mathcal{E} \boldsymbol{p}^{\prime}=0
$$

Epipolar Line Constraint

εp^{\prime} is the epipolar line corresponding to p^{\prime} in the left camera.

$$
a u+b v+c=0
$$

$$
\begin{gathered}
p=(u, v, 1)^{T} \\
l=(a, b, c)^{T} \\
l \cdot p=0 \\
p^{T} \mathcal{E} p^{\prime}=0 \\
\mathcal{E} p^{\prime} \cdot p=0
\end{gathered}
$$

Focus of Expansion for Translating Camera

FIGURE 11.3: Focus of expansion: under pure translation, the motion field at every point in the image points toward the focus of expansion.

Matrix that relates image of point in one camera to a second camera, given translation and rotation.
5 independent parameters (up to scale)
Assumes intrinsic parameters are known.

$$
\begin{aligned}
& \varepsilon=\left[t_{x}\right] \Re \\
& \boldsymbol{p}^{T} \mathcal{E} \boldsymbol{p}^{\prime}=0
\end{aligned}
$$

$$
\vec{a} \times \vec{b}=\left[a_{x}\right] \vec{b}
$$

Essential Matrix - Instantaneous case

- For small motion given translation and rotation velocity:

$$
\begin{aligned}
& \boldsymbol{t}=\delta t \boldsymbol{v}, \\
& \mathcal{R}=\mathrm{I}^{\prime}+\delta t\left[\boldsymbol{\omega}_{\times}\right] \\
& \boldsymbol{p}^{\prime}=\boldsymbol{p}+\delta t \dot{\boldsymbol{p}} .
\end{aligned}
$$

$$
\begin{array}{ll}
\boldsymbol{p}^{T} \mathcal{E} \boldsymbol{p}^{\prime}=0 & p^{T}\left[t_{x}\right] \Re p^{\prime}=0 \\
& \boldsymbol{p}^{T} \underbrace{\left[\boldsymbol{v}_{\times}\right]\left(\mathrm{I}+\delta t\left[\boldsymbol{\omega}_{\times}\right]\right)}_{\boldsymbol{E}}(\boldsymbol{p}+\delta t \dot{\boldsymbol{p}})=0
\end{array}
$$

FOE for Translating Camera

What if calibration is unknown?

Recall calibration eqn:
$\boldsymbol{p}=\mathcal{K} \hat{\boldsymbol{p}}, \quad$ where $\boldsymbol{p}=\left(\begin{array}{l}u \\ v \\ 1\end{array}\right)$ and $\mathcal{K} \stackrel{\text { def }}{=}\left(\begin{array}{ccc}\alpha & -\alpha \cot \theta & u_{0} \\ 0 & \frac{\beta}{\sin \theta} & v_{0} \\ 0 & 0 & 1\end{array}\right)$.

Estimating the Fundamental Matrix

$$
\boldsymbol{p}^{T} \mathcal{F} \boldsymbol{p}^{\prime}=0
$$

Each point correspondence can be expressed as a single linear equation
$(u, v, 1)\left(\begin{array}{lll}F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{23}\end{array}\right)\left(\begin{array}{l}u^{\prime} \\ v^{\prime} \\ 1\end{array}\right)=0$

Fundamental Matrix

Essential matrix for points on normalized image plane,

$$
\hat{p}^{T} \dot{\varepsilon} \hat{p}^{\prime}=0
$$

assume unknown calibration matrix:
yields:

$$
p=K \hat{p}
$$

$$
\boldsymbol{p}^{T \mathcal{F} \boldsymbol{p}^{\prime}=0 \quad \mathcal{F}=\mathcal{K}^{-T} \mathcal{E} \mathcal{K}^{\prime-1}, ~=0, ~}
$$

Estimating the Fundamental Matrix

$$
\boldsymbol{p}^{T} \mathcal{F} \boldsymbol{p}^{\prime}=0
$$

Each point correspondence can be expressed as a single linear equation

8 Point Algorithm

8 Point Algorithm

8 corresponding points, 8 equations.

Invert and solve for \mathcal{F}.
(Use more points if available; find least-squares solution to minimize $\left.\sum_{i=1}^{n}\left(\boldsymbol{p}_{i}^{T} \mathcal{F} \boldsymbol{p}_{i}^{\prime}\right)^{2}\right)$

$$
\boldsymbol{p}^{T} \mathcal{F} \boldsymbol{p}^{\prime}=0
$$

is \mathcal{F} (or \mathcal{E}) full rank?
No... singular with rank=2.
Has zero eigenvalue corresponding to epipole.

$$
F^{T} e=0
$$

(Note that E has two equal singlar values [Huang and Faugeras 1989])

Improved 8 Point Algorithm

Enforce rank 2 constraint!
(Also pay attention to numerical conditioning...)

Hartley 1995: use SVD.

1. Transform to centered and scaled coordinates
2. Form least-squares estimate of F
3. Set smallest singular value to zero.

Normalizing the Input Data

- Directly use the pixel coordinates produces bad result
- Normalization method is quite necessary
- Isotropic scaling of the input data:
- Points are translated to have their centroid at the origin
- The coordinates are scaled isotropically so that the average distance from the origin to these points is equal to $\sqrt{2}$.

Zhengyou Zhang \qquad 26

\qquad

Stereo Constraints

Given $\mathrm{p}_{1}, \mathrm{p}_{2}$, in the left and right image where is p_{3} ?

Three Essential Matrices

Essential matrices relate each pair: (calibrated case)

Trinocular Epipolar Geometry

p_{1} is at the intersection of the epipolar lines associated with p_{2} and p_{3}

Three Essential Matrices

$$
\begin{gathered}
\left\{\begin{array}{c}
p_{1}^{T} \mathcal{E}_{12} \boldsymbol{p}_{2}=0, \\
\boldsymbol{p}_{2}^{T} \mathcal{E}_{22} p_{3}=0, \\
\boldsymbol{p}_{3}^{T} \mathcal{E}_{31} \boldsymbol{p}_{1}=0,
\end{array}\right. \\
\boldsymbol{p}_{1}^{T} \boldsymbol{\mathcal { E }}_{12} \boldsymbol{p}_{2}=0 \\
\boldsymbol{p}_{3}^{T} \mathcal{E}_{31} \boldsymbol{p}_{1}=0
\end{gathered}
$$

Trinocular Epipolar Geometry

Trifocal plane

 formed from trifocal lines:

Recall: Epipolar Line Constraint

$\mathcal{E} p^{\prime}$ is the epipolar line corresponding to p^{\prime} in the left camera.

$$
a u+b v+c=0
$$

εp^{\prime}

$$
\begin{gathered}
p=(u, v, l)^{T} \\
l=(a, b, c)^{T} \\
l \cdot p=0 \\
\boldsymbol{p}^{T} \boldsymbol{l}=0 \\
\hline p^{T} \mathcal{E} \boldsymbol{p}^{\prime}=0 \\
\hline
\end{gathered}
$$

$$
\mathcal{E} p^{\prime} \cdot p=0
$$

Combining extrinsic and intrinsic calibration parameters

From lecture 3:

$$
\vec{p}=\frac{1}{z}\left(\begin{array}{ll}
K & \overrightarrow{0}
\end{array}\right)^{C} \vec{P} \quad \quad \text { Intrinsic }
$$

$$
\left({ }^{c} \vec{P}\right)=\left(\begin{array}{ccc|c}
-\begin{array}{ccc}
- & - & - \\
- & { }_{W} R & - \\
- & - & -
\end{array} & \begin{array}{c}
c^{c} O_{W} \\
- \\
\hline
\end{array} 0 & 0 & 1
\end{array}\right)(\vec{P}) \quad \text { Extrinsic }
$$

$$
\vec{p}=\frac{1}{z} K\left(\begin{array}{cc}
{ }_{W}^{c} R & { }^{C} O_{W}
\end{array}\right) \vec{P}
$$

ForsybhePonce	$\vec{p}=\frac{1}{z} \mathcal{M} \vec{P}$

Intrinsic parameters

Using homogenous coordinates,
we can write this as:
or:

$$
\begin{aligned}
& \left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)=\frac{1}{z}\left(\begin{array}{cccc}
\alpha & -\alpha \cot (\theta) & u_{0} & 0 \\
0 & \frac{\beta}{\sin (\theta)} & v_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right) \\
& \vec{p}=\frac{1}{z}
\end{aligned}
$$

Trifocal Line Constraint

Form the plane containing a line l and optical center of one camera:

$$
\begin{aligned}
& \boldsymbol{l}^{T} p=0 \\
& \boldsymbol{l}^{T} \mathcal{M} \boldsymbol{P}=0
\end{aligned}
$$

Trifocal Line Constraint

Assume calibrated camera coordinates

$$
\begin{aligned}
& \mathcal{M}_{1}=\left(\begin{array}{ll}
\mathrm{Id} & 0
\end{array}\right) \\
& \mathcal{M}_{2}=\left(\begin{array}{ll}
\mathcal{R}_{2} & \boldsymbol{t}_{2}
\end{array}\right) \\
& \mathcal{M}_{3}=\left(\begin{array}{ll}
\mathcal{R}_{3} & \boldsymbol{t}_{3}
\end{array}\right)
\end{aligned}
$$

then

$$
\mathcal{L}=\left(\begin{array}{cc}
\boldsymbol{l}_{1}^{T} & 0 \\
\boldsymbol{l}_{2}^{T} \mathcal{R}_{2} & \boldsymbol{l}_{2}^{T} \boldsymbol{t}_{2} \\
\boldsymbol{l}_{3}^{T} \mathcal{R}_{3} & \boldsymbol{l}_{3}^{T} \boldsymbol{t}_{3}
\end{array}\right)
$$

Extrinsic parameters: translation and rotation of camera frame

Non-homogeneous coordinates
From lecture 3

$$
{ }^{B} P={ }_{A}^{B} R{ }^{A} P+{ }^{B} O_{A}
$$

Homogeneous coordinates

$$
{ }^{B} P={ }_{A}^{B} C{ }^{A} P
$$

$$
\text { where } C=\left(\begin{array}{cccc}
{\left[\begin{array}{lll}
- & - & \mid \\
- & { }_{A}^{B} R & - \\
- & { }^{B} O_{A} \\
& - & - \\
\hline & 0 & 0
\end{array}\right.} & 1
\end{array}\right)
$$

Block matrix form $\quad\binom{{ }^{C} P}{1}=\left(\begin{array}{cc}{ }^{C} \mathcal{W} & { }^{C} O_{W} \\ \mathbf{0}^{T} & 1\end{array}\right)\binom{W}{1}$

Trifocal Line Constraint

If 3 lines intersect in more than one point (a line) this system is degenerate and is rank 2 .

$$
\mathcal{L}=\left(\begin{array}{cc}
\boldsymbol{l}_{1}^{T} & 0 \\
\boldsymbol{l}_{2}^{T} \mathcal{R}_{2} & \boldsymbol{l}_{2}^{T} \boldsymbol{t}_{2} \\
\boldsymbol{l}_{3}^{T} \mathcal{R}_{3} & \boldsymbol{l}_{3}^{T} \boldsymbol{t}_{3}
\end{array}\right)
$$

Rank $L=2$ means det. of 3×3 minors are zero, and can be expressed as:

$$
\boldsymbol{l}_{1} \times\left(\begin{array}{c}
\boldsymbol{l}_{2}^{T} \mathcal{G}_{1}^{1} l_{3} \\
l_{2}^{T} \mathcal{G}_{1}^{2} l_{3} \\
l_{2}^{T} \mathcal{G}_{1}^{3} l_{3}
\end{array}\right)=\mathbf{0}
$$

with

$$
\mathcal{G}_{1}^{i}=\boldsymbol{t}_{2} \boldsymbol{R}_{3}^{i T}-\boldsymbol{R}_{2}^{i} \boldsymbol{t}_{3}^{T}
$$

The Trifocal Tensor

These 33×3 matrices are called the trifocal tensor.

$$
\mathcal{G}_{1}^{i}=\boldsymbol{t}_{2} \boldsymbol{R}_{3}^{i T}-\boldsymbol{R}_{2}^{i} \boldsymbol{t}_{3}^{T}
$$

the constraint

$$
\boldsymbol{l}_{1} \times\left(\begin{array}{l}
\boldsymbol{l}_{2}^{T} \mathcal{G}_{1}^{1} \boldsymbol{l}_{3} \\
l_{2}^{T} \mathcal{G}_{1}^{2} l_{3} \\
l_{2}^{T} \mathcal{G}_{1}^{3} l_{3}
\end{array}\right)=\mathbf{0},
$$

can be used for point or line transfer.

Line Transfer

$\boldsymbol{l}_{1} \approx\left(\begin{array}{c}\boldsymbol{l}_{2}^{T} \mathcal{G}_{1}^{1} \boldsymbol{l}_{3} \\ \boldsymbol{l}_{2}^{T} \mathcal{G}_{1}^{2} \boldsymbol{l}_{3} \\ \boldsymbol{l}_{2}^{T} \mathcal{G}_{1}^{3} \boldsymbol{l}_{3}\end{array}\right)$

Quadrifocal Geometry

Can form a "quadrifocal tensor"
Faugeras and Mourrain (1995) have shown that it is algebraically dependent on associated essential/fundamental matricies and trifocal tensor: no new constraints added.
No additional independent constraints from more than 3 views.
line transfer:

$$
\boldsymbol{l}_{1} \approx\left(\begin{array}{c}
\boldsymbol{l}_{2}^{T} \mathcal{G}_{1}^{1} \boldsymbol{l}_{3} \\
\boldsymbol{l}_{2}^{T} \mathcal{G}_{1}^{2} \boldsymbol{l}_{3} \\
\boldsymbol{l}_{2}^{T} \mathcal{G}_{1}^{3} \boldsymbol{l}_{3}
\end{array}\right)
$$

point transfer via lines: form independent pairs of lines through $\mathrm{p} 2, \mathrm{p} 3$, solve for p 1 .

Uncalibrated Case

$$
\begin{aligned}
& \mathcal{L}=\left(\begin{array}{cc}
\boldsymbol{l}_{1}^{T} \mathcal{K}_{1} & 0 \\
\boldsymbol{l}_{2}^{T} \mathcal{K}_{2} \mathcal{R}_{2} & \boldsymbol{l}_{2}^{T} \mathcal{K}_{2} \boldsymbol{t}_{2} \\
\boldsymbol{l}_{3}^{T} \mathcal{K}_{3} \mathcal{R}_{3} & \boldsymbol{l}_{3}^{T} \mathcal{K}_{3} \boldsymbol{t}_{3}
\end{array}\right) \\
& \mathcal{A}_{i} \stackrel{\text { def }}{=} \mathcal{K}_{i} \mathcal{R}_{i} \mathcal{K}_{1}^{-1} \quad \boldsymbol{a}_{i} \stackrel{\text { def }}{=} \mathcal{K}_{i} \boldsymbol{t}_{i} \\
& \mathcal{M}_{1}=\left(\begin{array}{ll}
\mathcal{K}_{1} & \mathbf{0}
\end{array}\right), \mathcal{M}_{2}=\left(\begin{array}{ll}
\mathcal{A}_{2} \mathcal{K}_{1} & a_{2}
\end{array}\right), \\
& \mathcal{M}_{3}=\left(\begin{array}{ll}
\mathcal{A}_{3} \mathcal{K}_{1} & a_{3}
\end{array}\right) \\
& \operatorname{Rank}(\mathcal{L})=2 \Longleftrightarrow \operatorname{Rank}\left(\mathcal{L}\left(\begin{array}{cc}
\mathcal{K}_{1}^{-1} & 0 \\
0 & 1
\end{array}\right)\right)=\operatorname{Rank}\left(\begin{array}{cc}
l^{T}{ }_{l}^{T} & 0 \\
l_{3}^{T} \mathcal{A}_{2} & l_{3}^{T} a_{2}^{T} \\
l_{3}^{T} \mathcal{A}_{3}
\end{array}\right)=2
\end{aligned}
$$

Figure 12.10. Given four images p_{1}, p_{2}, p_{3} and p_{4} of some point $p_{\text {and }}$ three arbitrary image lines i_{2}, l_{3} and L_{4} passing through the points p_{2}, p_{3} and p_{4}, the ray passing through O_{1} and p_{1} must also pass through the point where the three planes L_{2}, L_{3} and L_{4} formed by the preinages of these lines intersect.

Trifocal Constraint with Noise

Figure 12.11. Trinoculat conetraitus in the prexesce of calibration or mexarement
ecrork the rays R_{1}, R_{2} and R may not intericect.

Project

- Final project may be:
- An original implementation of a new or published idea
- A project proposal not longer than two pages must be submitted by April 1.

Project

March 24: - Project Previews / Brainstorming
3-5 minute presentation describing

- Specific Project Idea
- Your research, or thesis proposal
(if it relates to vision)
- Paper you are interested in and may form the basis of a project

