Multi-view Geometry and 3D

* We have 2 eyes , thus we see 3D

M u Itl 'VieW Ge Ometry » Using multiple views allows inference of the 3rd

dimension

Readings: FP10

March 11, 2006

How to see in 3D Correspondence

(Using geometry...)
Given a point in one image, find the pointina

second image of the same 3-D location.
* Find corresponding features g

* Triangulate and reconstruct depth ) .
One of the hardest vision problems!

Last Lecture: Algorithms for (quickly) estimating
best correspondences.

Now: Where do we search? What are the constraints
between images of 3-D points in multiple views?

Outline Multi-view Geometry

» Multi-view geometry
» Epipolar constraint Relate
« Essential matrix

» Fundamental matrix

» Trnfocal tensor



Multi-view Geometry

Multi-view Geometry

Relate
* 3-D points

Multi-view Geometry

Relate .
+ 3-D points .

+ Camera centers

Multi-view Geometry
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Multi-view Geometry

Relate

* 3-D powmts

+ Camera centers

+ Camera orientation

« Camera intrinsics

Stereo Constraints

Relate

* 3-D powmts

+ Camera centers

+ Camera orientation

« Camera intrinsics

Given p in left image, where can corresponding point
p’ be?

Could be anywhere! Might not be same scene!

... Assume pair of pinhole views of static scene:



Stereo Constraints

Given p in left image. where can p” be?

Epipolar Constraint

Epipolar Line

FIGURE 111 Epipolar try: the point P the optical centers O sl @ of the two
coamitne., ainl the two o poand g of Poall lie bo che same plane

All epipolar lines contain epipole, the image of other camera center.

From Geometry to Algebra

Epipolar Constraint

N

o o

The epipolar constraint: these vectors are coplanar:

—_— —
0p-[00" x 0'p] =0

FIGURE 111 Epipolar
coanetns, ainl the two o

All epipolar lines contain epipole, the image of other camera center.
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Matrix Form
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Pimel and c2...
e2 is related to o by
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Review: Matrix Form of the Cross Product

p-[tx (Rp')]=0

Linear constraint, should be able to express as matrix
equation. ..

Review: Matrix Form of the Cross Product

The vector cross product also acts on two vectors and returns a third
vector. Geometrically, this new vector is constructed such that its
projection onto either of the two input vectors is zero.
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Review: Matrix Form of the Cross Product
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Matrix Form

p-[tx(Rp')=0



Matrix Form

Essential Matrix

p-[tx(Rp)]=0

P 1Rp'=0

p'Ep' =0

Epipolar Line Constraint

Matrix that relates image of point in one camera to a
second camera, given translation and rotation.

3 independent parameters (up to scale)

Assumes intrinsic parameters are known.

Essential Matrix — Instantaneous case

gp' is the epipolar line corresponding to p’ in the
letft camera.

au+bv+c=0

* For small motion given translation and rotation
velocity:

t=dtwv,
R =1"+6t|wx]
p' =p-+dtp.

po](I +6t[w])(p+dtp) =0
&

FOE for Translating Camera

p=wv])
I=(a,b,c)’
I-p=0

p'Ep' =0
&'p=0

Focus of Expansion for

Translating Camera

FIGURE 11.3: Focus of expansion: under pure translation, the motion field at every point

in the image points toward the focus of expansion,




What if calibration is unknown?

Fundamental Matrix

Recall calibration eqn:

w a —acotfl ug
do a
p=Kp. where p v and £ |0 - vo | .
1 sinf
0 0 1

ol
e e

Estimating the Fundamental Matrix

Essential matrix for points on normalized image plane,
pEP'=0
assume unknown calibration matrix:

p=Kp

yields:

p'Fp =0 F=KTex"!

Estimating the Fundamental Matrix

p'Fp' =0
Each point correspondence can be expressed as a
single linear equation

(Fu Fia Fi\ g
(uyw, IJ(F:. Fa Fzs) ("’) 0
Fy Fn Fa/\1

8 Point Algorithm

8 corresponding points, 8 equations.
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Invert and solve for F.

(Use more points if available: find least-squares
solution to minimize 3 (ol Fpl)? )

i=1

p Fp =0
Each point correspondence can be expressed as a

single linear equation
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8 Point Algorithm

p'Fp' =0
is F(or E) tull rank?

No...singular with rank=2.
Has zero eigenvalue corresponding to epipole.

Fle=0

(Note that ‘£ has two equal singlar values [Huang
and Faugeras 1989])



Improved 8 Point Algorithm Normalizing the Input Data

Enforce rank 2 constraint! + Directly use the pixel coordinates produces bad
result

+ Normalization method is quite necessary
+ Tsotropic scaling of the input data:

(dlso pay attention to numerical conditioning ...)

Ha1tley 1995: use SVD. — Points are translated to have their centroid at the origin
1. Transform to centered and scaled coordinates — The coordinates are scaled isotropically so that the

. . average distance from the origin to these points is equal
2. Form least-squares estimate of F t0 I

3. Set smallest singular value to zero.

26
Geometry and is Unceriainty: A Review
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Zhengyou Zhang
Determining the Epipolar Geometry and its Uncerainty: & Review
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Stereo Constraints

Given p;, p,, in the left and right image where is p;?




Three Essential Matrices

Trinocular Epipolar Geometry

Essential matrices relate each pair:

(calibrated case)

— G~ G

Trinocular Epipolar Geometry

Trifocal plane
formed from
trifocal lines:

Recall: Epipolar Line Constraint

— B Given p2 and p2,
pl is determined!

(without explicit depth
estimation;
only weak calibration)

p, is at the intersection of the epipolar lines associated with p,and p,

Three Essential Matrices

p:f:EHPQ =0,
P E2apy =0,

Pé Eapy =0,
T
p€up, =0
P3Tg31P1 =0

gp' is the epipolar line corresponding to p’ in the
left camera.

au+bv+c=0

p=v])

I=(a.b,c)”
I-p=0
p'l=0

pl&p' =0

Eptp=0

Combining extrinsic and intrinsic
calibration parameters
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Intrinsic parameters

From lecture 3:
[
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Trifocal Line Constraint

Form the plane containing a line / and optical center
of one camera:

Trifocal Line Constraint

Assume calibrated camera coordinates

M, —(Id 0)
My = (Ry t2)
Mz =(Rs t3)
then
0
L= z;“jag l;tz
ISRy I3y

Extrinsic parameters: translation
and rotation of camera frame

Non-homogeneous coordinates From lecture 3:
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Trifocal Line Constraint

3 cameras, 3 plane equations:
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I 3 lines intersect in more than ene point (a line) this system
is degenerate and is rank 2.

L0
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l:g R:i 13 "':t

Rank £ = 2 means det. of 3x3 minors are zero. and
can be expressed as:
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The Trifocal Tensor Trifocal Line Constraint

These 3 3x3 matrices are called the trifocal tensor. line transfer:
T~1

i iT i 4T 15Gils
G =t Ry — Riyt; 1

ll ~ l%g%lg
il

. 3
the constraint 2 g1 I3
T
l% Gils
l]_ X lQ g%lg = 0, ) R o R . )
l%ﬂ Gil, point transfer via lines: form independent pairs of

lines through p2.p3. solve for pl.

can be used for point or line transfer.

Line Transfer Uncalibrated Case
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Can form a “quadrifocal tensor™

Faugeras and Mourrain (1995) have shown that it is algebraically

depel]dem on associated essential/fundamental matricies and trifocal Figure 12.10. Civen four images pi, pa, py and py of some point P and thrae arbitrary
image lines b, b and b passing throngh the points pa. pz andl pa. the ray passing thengh
tensor: no new constraints added. Oh andl p1 st also pass throuzh the point where the three planes Lz, Ls and Ly formed

Ly the prefiages of ibese lnes intersect

No additional independent constraints from more than 3 views.



Trifocal Constraint with Noise

Figure 12,11, Trine: the pressnee of calibrasion or measrement
errors: the rave Ri, Rs o ,

Project

Project

March 24: - Project Previews / Brainstorming
3-5 minute presentation describing
— Specific Project Idea
— Your research, or thesis proposal
(if it relates to vision)

— Paper you are interested in and may form the basis

of a project

 Final project may be:
— An original implementation of a new or published
idea
* A project proposal not longer than two pages must
be submitted by April 1.



